Performance Analysis of MIMO/FSO Systems Using SC-QAM Signaling over Atmospheric Turbulence Channels
نویسندگان
چکیده
We theoretically study the performance of multiple-input multiple-output (MIMO) free-space optical (FSO) systems using subcarrier quadrature modulation (SC-QAM) signaling. The system average symbolerror rate (ASER) is derived taking into account the atmospheric turbulence effects on the MIMO/FSO channel, which is modeled by log-normal and the gamma-gamma distributions for weak and moderate-to-strong turbulence conditions. We quantitatively discuss the influence of index of refraction structure parameter, link distance, and different MIMO configurations on the system ASER. We also analytically derive and discuss the MIMO/FSO average (ergodic) channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE), under the impact of various channel conditions. Monte Carlo simulations are also performed to validate the mathematical analysis, and a good agreement between numerical and simulation results is confirmed. key words: free-space optical (FSO) communications, multiple-input multiple-output (MIMO), subcarrier quadrature-amplitude modulation (SC-QAM), atmospheric turbulence, channel capacity
منابع مشابه
Performance Analysis of MIMO/FSO Systems Using SC-QAM Signaling Over Atmospheric Turbulence Channels∗∗
We theoretically analyze the performance of multipleinput multiple-output (MIMO) free-space optical (FSO) systems using subcarrier quadrature modulation (SC-QAM) signaling. The system average symbol-error rate (ASER) is derived taking into account the atmospheric turbulence effects on the MIMO/FSO channel, which is modeled by lognormal and the gamma-gamma distributions for the cases of weak-to-...
متن کاملAverage Channel Capacity of Free-space Optical Mimo Systems over Atmospheric Turbulence Channels
In this paper, we theoretically analyze the performance of multiple-input multiple-output (MIMO) free-space optical (FSO) systems. The MIMO/FSO average channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE) is derived taking into account the atmospheric turbulence effects on the MIMO/FSO channel. They are modeled by log-normal and the gamma-gamma distributions ...
متن کاملPerformance Analysis of FSO System with Spatial Diversity and Relays for M-QAM over Log-Normal Channel
The performance analysis of free space optical communication (FSO) systems using relays and spatial diversity at the transmitter end is presented in this paper. The impact of atmospheric turbulence and attenuation caused by different weather conditions and geometric losses has also been taken into account. The effect of turbulence is modeled over a log-normal probability density function. We pr...
متن کاملPerformance Analysis of SISO and MIMO FSO Communication Systems Over Turbulent Channels
Free-space optical (FSO) communications using intensity modulation and direct detection (IM/DD), is a cost-effective and high bandwidth access technique, which has recently received significant attention and commercial interest for a variety of applications [30, 44]. Optical wireless communication systems are rapidly gaining popularity as effective means of transferring data at high rates over ...
متن کاملPerformance analysis of FSO using relays and spatial diversity under log-normal fading channel
The performance analysis of free space optical communication (FSO) system using relays and spatial diversity at the source is studied in this paper. The effect of atmospheric turbulence and attenuation, caused by different weather conditions and geometric losses, has also been considered for analysis. The exact closed-form expressions are presented for bit error rate (BER) of M-ary quadrature a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 97-A شماره
صفحات -
تاریخ انتشار 2014